Hamburger Wissenschaftler entwickeln neuartige Nanomaterialien für die Umwandlung von Wärme in Strom

06.06.2016

Bildunterschrift: Links: Aufbau des geschichteten optischen Nanomaterials aus nur 20 Nanometer dicken Lagen des hochtemperaturbeständigen Wolframs und 100 Nanometer dicken Lagen aus ebenfalls hochtemperatur­festem Hafniumdioxid. Rechts: Die elektronenmikroskopische Aufnahme des opti­schen Nanomaterials zeigt die sehr hohe Präzision, mit der die Einzellagen erzeugt wurden. Zum Ver­gleich: Der Durchmesser eines menschlichen Haares ist fünftausendmal größer als die Dicke einer Wolframschicht. (Foto: TUHH)

Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Hamburg (TUHH), des Helmholtz-Zentrum Geesthacht (HZG) in Kooperation mit der kanadischen University of Alberta haben ein neuartiges opti­sches Nanomaterial hergestellt, das es ermöglicht, Wärme direkt in Strahlung und danach mit hoher Effizienz in elektrische Energie umzuwandeln. Das neu entwi­ckelte Nanomaterial soll einen wichtigen Beitrag leisten, moderne Industriegesellschaf­ten auf ressourcenschonenden Energieeinsatz umzustellen. Publiziert wird die Arbeit am 6. Juni 2016 in „Nature Communications“, einer der weltweit wichtigsten Fachzeitschriften für fachübergreifende, wissenschaftliche Forschungsarbeiten.

Wärmestrahlung direkt in elektrische Energie umzuwandeln, bezeichnet man als Thermophotovoltaik. Hierfür haben die Hamburger Wissenschaftler geschickt Nanoschichten aus den hochtemperaturfesten Materialien Wolfram und Hafniumdioxid kombiniert und daraus ein sogenanntes optisches Metamaterial aufgebaut. Die Dicke einer Wolframschicht ist dabei fünftausendmal kleiner als der Durchmesser eines menschlichen Haares. Dieses neuartige Nanomaterial unterdrückt die Aussendung unerwünschter langwelliger Wärmestrahlung bei 1000°C und lässt nur die Emission der auch technisch verwertbaren kürzerwelligeren Wärmestrahlung zu. Die langwellige Strahlung wird in der thermophotovoltaischen Energieumwandlung nicht gebraucht und wäre verloren.

Durch die Unterdrückung der langwelligen Emission lässt sich die Effizienz von thermophotovoltaischen Energiewandlern deutlich erhöhen, mit denen die in industriellen Prozessen anfallende Abwärme oder auch Wärme aus Sonnenstrahlung direkt in elektrische Energie umgewandelt werden kann. Das Hamburger Forscherteam konnte weltweit erstmals den Nachweis erbringen, dass eine solche selektive Emission mit Metamaterialien bei 1000°C möglich ist. Die Temperaturbeständigkeit des optischen Metamaterials ist Rekord.

Die optischen Nanomaterialien wurden im Sonderforschungsbereich 986 „Maßgeschneiderte Multiskalige Materialsysteme – M³“ der TUHH entwickelt. Der SFB wird von der Deutschen Forschungsgemeinschaft gefördert. „Gemeinsam mit unseren Kooperationspartnern von der Univer­sity of Alberta ist es uns gelungen, alle erforderlichen Kompetenzen von der Theorie und elektro­magnetischen Simulation über die Schichtherstellung bis hin zur optischen, thermischen und strukturanalytischen Charakterisierung zusammenzuführen und darüber hinaus einen hervorragen­den länderübergreifenden Teamgeist zu etablieren“, sagt Professor Manfred Eich, Co-Sprecher des SFB 986 und Leiter des Instituts für Optische und Elektronische Materialien der TUHH.

Publikation
"Controlling thermal emission with refractory epsilon near-zero metamaterials via topological transi­tions" by Pavel Dyachenko, Sean Molesky, Alexander Petrov, Michael Störmer, Tobias Krekeler, Slawa Lang, Martin Ritter, Zubin Jacob, and Manfred Eich [Paper #NCOMMS-15-23573B]
in Nature Communications

DOI: 10.1038/ncomms11809

Der Artikel erscheint am 6. Juni 2016 unter http://www.nature.com/nco … 809/full/ncomms11809.html

Weitere Informationen:

Prof. Dr. Manfred Eich
Technische Universität Hamburg-Harburg (TUHH)
Institut für Optische und Elektronische Materialien
Eißendorfer Straße 38
21073 Hamburg
Tel +49 40 42878 3147
Fax +49 40 42878 2229
E-Mail: m.eich@tuhh.de
https://www.tuhh.de/alt/oem/home.html


TUHH - Pressestelle
Jasmine Ait-Djoudi
E-Mail: pressestelle@tuhh.de
Tel.: +49 40 428 78 3458