Module Description

Module: Phenomena and Methods in Materials Science

Courses:

TitleTypeHrs/WeekPeriod
Experimental Methods for the Characterization of MaterialsLecture2Summer Semester
Phase equilibria and transformationsLecture2Summer Semester

Module Responsibility:

Prof. Patrick Huber

Admission Requirements:

None

Recommended Previous Knowledge:

Basic knowledge in Materials Science, e.g. Werkstoffwissenschaft I/II

Educational Objectives:

Professional Competence

Theoretical Knowledge

The students will be able to explain the properties of advanced materials along with their applications in technology, in particular metallic, ceramic, polymeric, semiconductor, modern composite materials (biomaterials) and nanomaterials.

Capabilities

The students will be able to select material configurations according to the technical needs and, if necessary, to design new materials considering architectural principles from the micro- to the macroscale. The students will also gain an overview on modern materials science, which enables them to select optimum materials combinations depending on the technical applications.

Personal Competence

Social Competence

The students are able to present solutions to specialists and to develop ideas further.

Autonomy

The students are able to ...

  • assess their own strengths and weaknesses.
  • gather new necessary expertise by their own.

ECTS-Credit Points Module:

6 ECTS

Examination:

Written exam

Workload in Hours:

Independent Study Time: 124, Study Time in Lecture: 56


Course: Experimental Methods for the Characterization of Materials (Lecture)

Lecturer:

Patrick Huber

Language:

German & English

Period:

Summer Semester

Content:

  • Structural characterization by photons, neutrons and electrons (in particular X-ray and neutron scattering, electron microscopy, tomography)
  • Mechanical and thermodynamical characterization methods (indenter measurements, mechanical compression and tension tests, specific heat measurements)
  • Characterization of optical, electrical and magnetic properties (spectroscopy, electrical conductivity and magnetometry)


Literature:

William D. Callister und David G. Rethwisch, Materialwissenschaften und Werkstofftechnik, Wiley&Sons, Asia (2011).

William D. Callister, Materials Science and Technology, Wiley& Sons, Inc. (2007).


Course: Phase equilibria and transformations (Lecture)

Lecturer:

Jörg Weißmüller

Language:

German

Period:

Summer Semester

Content:

Fundamentals of statistical physics, formal structure of phenomenological thermodynamics, simple atomistic models and free-energy functions of solid solutions and compounds. Corrections due to nonlocal interaction (elasticity, gradient terms). Phase equilibria and alloy phase diagrams as consequence thereof. Simple atomistic considerations for interaction energies in metallic solid solutions. Diffusion in real systems. Kinetics of phase transformations for real-life boundary conditions. Partitioning, stability and morphology at solidification fronts. Order of phase transformations; glass transition. Phase transitions in nano- and microscale systems.

Literature:

Wird im Rahmen der Lehrveranstaltung bekannt gegeben.

Back to Overview