Modulbeschreibung

Modul: Solarenergienutzung

Lehrveranstaltungen:

TitelTypSWSZeitraum
EnergiemeteorologieVorlesung1Sommersemester
EnergiemeteorologieGruppenübung1Sommersemester
KollektortechnikVorlesung2Sommersemester
Solare StromerzeugungVorlesung2Sommersemester

Modulverantwortlich:

Prof. Martin Kaltschmitt

Zulassungsvoraussetzungen:

Keine

Empfohlene Vorkenntnisse:

keine

Modulziele / angestrebte Lernergebnisse:

Fachkompetenz

Wissen

Mit Abschluss dieses Moduls können die Studierenden sich fachliche mit Grundlagen und mit aktuellen Fragen und Problemen aus dem Gebiet der Solarenergienutzung auseinandersetzen und diese unter Einbeziehung vorheriger Lehrinhalte und aktueller Problematiken erläutern und kritisch Stellung dazu beziehen. Sie können insbesondere die Prozesse innerhalb einer Solarzelle fachlich beschreiben und die Besonderheiten bei der Anwendung von Solarmodulen erläutern. Des Weiteren können sie einen Überblick über die Kollektortechnik in solarthermischen Anlagen geben.

Fertigkeiten

Die Studierenden können mit Abschluss dieses Moduls die erlernten Grundlagen auf beispielhafte solarstrahlungnutzende Energiesysteme anwenden und in diesem Zusammenhang unter anderem Potenziale und Grenzen solarer Energieerzeugungsanlagen für verschiedene geografische Bedingungen einschätzen und beurteilen. Sie sind in der Lage unter gegebenen Randbedingungen solare Energieerzeugungsanlagen technische effizient zu dimensionieren und mit der Nutzung modulübergreifendes Wissens ökonomisch und ökologisch zu beurteilen. Dafür notwendige Berechnungsmethoden innerhalb der Strahlungslehre können sie auswählen und aufgabenspezifisch anwenden. 

Personale Kompetenzen

Selbstständigkeit

Die Studierenden können sich selbstständig Quellen auf Basis der Vorlesungsschwerpunkte über das Fachgebiet erschließen und  Wissen aneignen. Des Weiteren können die Studierenden angeleitet durch Lehrende eigenständig Berechnungsmethoden zur Potenzialanalyse und technischen Auslegung von solaren Energiesystemen durchführen und auf dieser Basis Ihren jeweiligen Lernstand einschätzen und eventuell weitere Arbeitsschritte definieren.

Leistungspunkte Modul:

6 LP

Studienleistung:

Klausur

Arbeitsaufwand in Stunden:

Eigenstudium: 96, Präsenzstudium: 84


Lehrveranstaltung: Energiemeteorologie

Dozenten:

Volker Matthias, Beate Geyer

Sprache:

Deutsch

Zeitraum:

Sommersemester

Inhalt:

  • Einführung: Strahlungsquelle Sonne, Astronomische Grundlagen, Grundlagen der Strahlung
  • Aufbau der Atmosphäre
  • Eigenschaften und Gesetze von Strahlung
    • Polarisation
    • Strahlungsgrößen
    • Plancksches Strahlungsgesetz
    • Wiensches Verschiebungsgesetz
    • Stefan-Boltzmann Gesetz
    • Das Kirchhoffsche Gesetz
    • Helligkeitstemperatur
    • Absorption, Reflexion, Transmission
  • Strahlungsbilanz, Globalstrahlung, Energiebilanz
  • Atmosphärische Extinktion
  • Mie- und Rayleigh-Streuung
  • Strahlungstransfer
  • Optische Effekte in der Atmosphäre
  • Berechnung Sonnenstand und Berechnung Strahlung auf geneigte Flächen

Literatur:

  • Helmut Kraus: Die Atmosphäre der Erde
  • Hans Häckel: Meteorologie
  • Grant W. Petty: A First Course in Atmosheric Radiation
  • Martin Kaltschmitt, Wolfgang Streicher, Andreas Wiese: Renewable Energy
  • Alexander Löw, Volker Matthias: Skript Optik Strahlung Fernerkundung

Lehrveranstaltung: Kollektortechnik (Vorlesung)

Dozent:

Agis Papadopoulos

Sprache:

Deutsch

Zeitraum:

Sommersemester

Inhalt:

  • Einführung: Energiebedarf und Anwendung der Sonnenenergie.
  • Wärmeübertragung in der Solarthermie: Wärmeleitung, Konvektion, Wärmestrahlung.
  • Kollektoren: Arten, Aufbau, Wirkungsgrad, Dimensionierung, konzentrierende Systeme.
  • Energiespeicher: Anforderungen, Arten.
  • Passive Sonnenenergienutzung: Komponenten und Systeme.
  • Solarthermische Niedertemperatursysteme: Kollektorvarianten, Aufbau, Berechnung.
  • Solarthermische Hochtemperatursysteme: Klassifizierung von Solarkraftwerke, Aufbau.
  • Solare Klimatisierung.

Literatur:

  • Vorlesungsskript.
  • Kaltschmitt, Streicher und Wiese (Hrsg.). Erneuerbare Energien: Systemtechnik, Wirtschaftlichkeit, Umweltaspekte, 5. Auflage, Springer, 2013.
  • Stieglitz und Heinzel .Thermische Solarenergie: Grundlagen, Technologie, Anwendungen. Springer, 2012.
  • Von Böckh und Wetzel. Wärmeübertragung: Grundlagen und Praxis, Springer, 2011.
  • Baehr und Stephan. Wärme- und Stoffübertragung. Springer, 2009.
  • de Vos. Thermodynamics of solar energy conversion. Wiley-VCH, 2008.
  • Mohr, Svoboda und Unger. Praxis solarthermischer Kraftwerke. Springer, 1999.

Lehrveranstaltung: Solare Stromerzeugung (Vorlesung)

Dozenten:

Martin Schlecht, Dietmar Obst

Sprache:

Deutsch

Zeitraum:

Sommersemester

Inhalt:

  1. Einführung
  2. Primärenergien und Verbrauch, verfügbare Sonnenenergie
  3. Physik der idealen Solarzelle
  4. Lichtabsorption, PN-Übergang, charakteristische Größen der Solarzelle, Wirkungsgrad
  5. Physik der realen Solarzelle
  6. Ladungsträgerrekombination, Kennlinien, Sperrschichtrekombination, Ersatzschaltbild
  7. Erhöhung der Effizienz
  8. Methoden zur Erhöhung der Quantenausbeute und Verringerung der Rekombination
  9. Hetero- und Tandemstrukturen
  10. Hetero-Übergang, Schottky-, elektrochemische, MIS- und SIS-Zelle, Tandem-Zelle
  11. Konzentratorzellen
  12. Konzentrator-Optiken und Nachführsysteme, Konzentratorzellen
  13. Technologie und Eigenschaften: Solarzellentypen, Herstellung, einkristallines Silizium und Galliumarsenid, polykristalline Silizium- und Silizium-Dünnschichtzellen, Dünnschichtzellen auf Trägern (amorphes Silizium, CIS, elektrochemische Zellen)
  14. Module
  15. Schaltungen

Literatur:

  • A. Götzberger, B. Voß, J. Knobloch: Sonnenenergie: Photovoltaik, Teubner Studienskripten, Stuttgart, 1995
  • A. Götzberger: Sonnenenergie: Photovoltaik : Physik und Technologie der Solarzelle, Teubner Stuttgart, 1994
  • H.-J. Lewerenz, H. Jungblut: Photovoltaik, Springer, Berlin, Heidelberg, New York, 1995
  • A. Götzberger: Photovoltaic solar energy generation, Springer, Berlin, 2005
  • C. Hu, R. M. White: Solar CelIs, Mc Graw HilI, New York, 1983
  • H.-G. Wagemann: Grundlagen der photovoltaischen Energiewandlung: Solarstrahlung, Halbleitereigenschaften und Solarzellenkonzepte, Teubner, Stuttgart, 1994
  • R. J. van Overstraeten, R.P. Mertens: Physics, technology and use of photovoltaics, Adam Hilger Ltd, Bristol and Boston, 1986
  • B. O. Seraphin: Solar energy conversion Topics of applied physics V 01 31, Springer, Berlin, Heidelberg, New York, 1995
  • P. Würfel: Physics of Solar cells, Principles and new concepts, Wiley-VCH, Weinheim 2005
  • U. Rindelhardt: Photovoltaische Stromversorgung, Teubner-Reihe Umwelt, Stuttgart 2001
  • V. Quaschning: Regenerative Energiesysteme, Hanser, München, 2003
  • G. Schmitz: Regenerative Energien, Ringvorlesung TU Hamburg-Harburg 1994/95, Institut für Energietechnik
Zurück zur Übersicht